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Abstract
We consider an Ising model on a lattice of squares and hexagons (the ‘4–6’
lattice), which does not appear to have been studied previously. The critical
temperature is obtained as the root of a sixth-order equation. An exact
expression is obtained for the spontaneous magnetization.

PACS number: 05.50.+q

In the years following Onsager’s pioneering solution of the square lattice Ising model (Onsager
1944) and solutions for the other regular two-dimensional lattices (see, for example, Green
and Hurst (1964)), exact solutions have also been obtained for a number of more complex
lattices. We mention, in particular, the so-called ‘Union Jack’ lattice. (Vaks et al 1965, Lin
and Wang 1987, Choy and Baxter 1987) and the 4–8 or ‘bathroom tile’ lattice (Utiyama 1951,
Lin et al 1987, Baxter and Choy 1988). It is known, in fact, that all planar Ising models (i.e.
with non-crossing bonds) are, in principle, solvable by the Pfaffion method (Green and Hurst
1964), and hence one could say that the problem is solved. However, it is still of interest to
compute the critical point, free energy and magnetization explicitly for particular lattices.

The 4–8 lattice provides one example of tiling the plane with regular polygons of more than
one kind. Other examples are easily constructed. Lin and Wang (1988) provide a solution for
a 4–6 lattice, made of squares and hexagons, as a special case of the 4–8 lattice (figure 1(a)).
We have identified a different 4–6 lattice (figure 1(b)) and the solution of this lattice is the
subject of this letter.

There are at least two different approaches to the solution. The procedure we follow is to
first transform the lattice to a square lattice with more complex interactions. This is followed by
a transformation to an 8-vertex model. As the vertex weights satisfy the free-fermion condition
(Fan and Wu 1970), the free energy and critical point are obtainable by standard methods. The
magnetization is more difficult to obtain and is derived below.

Let us start by defining A sites (four-fold coordinated) and B sites (three-fold coordinated),
and considering an elementary square of B sites and their connections to A sites, as shown
in figure 2(a). We assume N A sites, which form a square lattice, and consequently have
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(a) (b)

Figure 1. (a) The 4–6 lattice of Lin and Wang (1988). (b) The 4–6 lattice considered in this paper.
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Figure 2. (a) An elementary A square. Summation over the internal B spins yields the generalized
Ising model shown in (b).

4N B sites. Further, we assume nearest-neighbour ferromagnetic interactions with coupling
constant K ≡ βJ , J > 0. It is straightforward to generalize this to the case of differing
coupling constants K1, K2, but we do not pursue this.

The partition factor of an elementary square of A spins is then

Z(σ1, σ2, σ3, σ4) =
∑
{s}

exp [K(s1σ1 + s2σ2 + s3σ3 + s4σ4)] exp [K(s1s2 + s2s3 + s3s4 + s1s4)]

(1)

and it is straightforward to carry out the summation over B spins and to express it in the form

Z(σ1, σ2, σ3, σ4) = �(K) exp [K̃(σ1σ2 + σ2σ3 + σ3σ4 + σ1σ4)]

× exp [L̃(σ1σ3 + σ2σ4)] exp [M̃σ1σ2σ3σ4] (2)

with

�e4K̃+2L̃+M̃ = e8K + 4e2K + 5 + 4e−2K + 2e−4K = P1(K) (3)

�e−4K̃+2L̃+M̃ = 2e4K + 4e2K + 5 + 4e−2K + e−8K = P2(K) (4)

�e−2L̃+M̃ = 3e4K + 4e2K + 2 + 4e−2K + 3e−4K = P3(K) (5)

�e−M̃ = e6K + e4K + 3e2K + 6 + 3e−2K + e−4K + e−6K = P4(K). (6)

The results of this transformation is to give an Ising model on the A spins, with nearest-
neighbour coupling 2K̃ , a diagonal next-nearest-neighbour coupling L̃ and a four-spin coupling
M̃ (see figure 2(b)). Transformations of this type, and other types, have a long history in Ising
model studies (Fisher 1959, Syozi 1972).
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Figure 3. The eight spin/vertex configurations. Reversal of all spins corresponds to the same
vertex.

It was shown by Wu (1971) that an Ising model of this type could be transformed to an
8-vertex model in an external electric field. This results in the model shown in figure 3, with
Boltzmann weights ωi given by

ω1 = P1(K) ω2 = P2(K) ω3 = ω4 = P3(K) ω5 = ω6 = ω7 = ω8 = P4(K).

(7)

Fan and Wu (1970) have shown that, provided the vertex weights satisfy the ‘free-fermion’
condition

ω1ω2 + ω3ω4 = ω5ω6 + ω7ω8, (8)

the model has the same critical behaviour as the solvable nearest-neighbour Ising model.
Furthermore the critical point is given by the condition

ω1 + ω2 + ω3 + ω4 = 2 max{ω1, ω2, ω3, ω4}. (9)

In our case condition (8) becomes

P1P2 + P 2
3 = 2P 2

4 (10)

which is satisfied identically by the expressions (3)–(6). Thus our model falls within the
standard Ising universality class. It is easily seen that ω1 is always the maximum weight, and
hence the criticality condition is

P1 = P2 + 2P3. (11)

Writing equation (11) in terms of the variable y = e2K gives, after factorization,

y6 − 2y5 − 5y4 + 4y3 − 7y2 + 2y − 1 = 0 (12)

with the physical root y = 3.3203, giving the critical coupling

Kc = 0.600 03. . . . (13)

In terms of the variable t = tanhK equation (12) takes the slightly simpler form

2t6 − 4t5 − 3t4 − 4t3 + 1 = 0. (14)

We turn now to the magnetization per spin, which has the form

m ≡ M/N = 〈σ 〉 + 4〈s〉 (15)

where we denote, as before, the spins on sublattices A and B by σ , s respectively. The
expectation 〈σ 〉 can be obtained directly from the vertex model, following Baxter (1986). The
expression is

〈σ 〉 = (1 − �−2)1/8 (16)

with

�2 = (�2 + h2 − 1)/�2 (17)
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and

� = 2(ω5ω6ω7ω8)
1/2/(ω1ω4 + ω2ω3) (18)

h = 1
2 (ω

2
2 + ω2

3 − ω2
1 − ω2

4)/(ω1ω4 + ω2ω3). (19)

In the present case, a little algebra gives

� = P 2
1 + P 2

2 − 2P 2
3

2(P1P2 + P 2
3 )

= (y + 1)2(y − 1)4(y2 + 1)(y4 − 2y3 + 6y2 − 2y + 1)

4y2(y4 − y3 + 4y2 − y + 1)2

= 8t4(1 + t2)(1 + 3t4)

(1 + t4 − 2t6)2
. (20)

Calculation of the B-site magnetization is a little more involved. We follow essentially
the steps in Choy and Baxter (1987). Returning to figure 2(a), we can write

4〈s〉 = 〈s1 + s2 + s3 + s4〉 =
∑

{s,σ }(s1 + s2 + s3 + s4)e−βH(s,σ )∑
{s,σ } e−βH(s,σ )

= �N−1 ∑
{σ } e−βH̃X

�N
∑

{σ } e−βH̃
(21)

where summation over s-spins has been carried out completely in the denominator, and over
all A plaquettes except one in the numerator. H̃ is the transformed Hamiltonian. The factor
X is

X = exp [−K̃(σ1σ2 + σ2σ3 + σ3σ4 + σ1σ4)] exp [−L̃(σ1σ3 + σ2σ4)] exp [−M̃σ1σ2σ3σ4]

×
∑

s1,s2,s3,s4

(s1 + s2 + s3 + s4) exp [K(σ1s1 + σ2s2 + σ3s3 + σ4s4)]

× exp [K(s1s2 + s2s3 + s3s4 + s1s4)].

This can be evaluated, after some algebra, to give

X = X1(σ1 + σ2 + σ3 + σ4) + X2(σ1σ2σ3 + σ1σ2σ4 + σ1σ3σ4 + σ2σ3σ4) (22)

with

X1 = �
t(1 + t)(1 + t2)(1 − t + 2t2 + 4t4)

(1 + t2 + 2t4)(1 − 2t + 3t2 + 2t4)
(23)

X2 = −2�
t5(1 + t)2

(1 + t2 + 2t4)(1 − 2t + 3t2 + 2t4)
. (24)

Hence we obtain

〈s〉 = t (1 + t)

(1 + t2 + 2t4)(1 − 2t + 3t2 + 2t4)
{(1 + t2)(1 − t + 2t2 + 4t4)〈σ1〉− 2t4(1 + t)〈σ1σ2σ3〉}

(25)

an expression involving both 〈σ 〉, which we already have, and a three-spin correlation 〈σ1σ2σ3〉.
This result is the analogue of equation (6) of Choy and Baxter (1987).

To compute the three-spin correlation one needs to use the equivalence of the free-
fermion vertex model to a ‘checkerboard’ Ising model (Baxter 1986). Using the transformation
equations therein, and equation (7) of Choy and Baxter, gives

〈σ1σ2σ3〉 = F(t)

G(t)
〈σ 〉 (26)

where

F(t) = 1 − t (1 − t + t2 + t3 + 2t4)�

1 − 2t + 3t3 + 2t4
− t2(1 + 5t4 + 2t6)�

1 + 2t2 + 5t4 + 4t6 + 4t8
(27)

G(t) = t2(1 − t)2�

1 − 2t + 3t3 + 2t4
− t2(1 + 5t4 + 2t6)�

1 + 2t2 + 5t4 + 4t6 + 4t8
(28)
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Figure 4. The A and B sublattice magnetizations versus T/Tc .

and

� =
√

2(1 + t2)/(1 + 3t4). (29)

Finally

〈s〉 = t (1 + t)

(1 + t2 + 2t4)(1 − 2t + 3t3 + 2t4)

{
(1 + t2)(1 − t + 2t2 + 4t4) − 2t4(1 + t)

F (t)

G(t)

}
〈σ 〉.

(30)

Equations (16), (20) and (30) provide a closed-form expression for the magnetization of both
A and B sites on the 4–6 lattice.

These expressions can easily be evaluated numerically and in figure 4 we show the
magnetizations as functions of temperature.

A partial check on the correctness of our results can be made by expanding the expressions
in low-temperature series in the variable u = e−2K . This yields

〈σ 〉 = 1 − 2u4 − 8u5 − 36u6 − 96u7 − 252u8 − 592u9 − 1724u10 + · · · (31)

and

〈s〉 = 1 − 2u3 − 6u4 − 8u5 − 16u6 − 54u7 − 240u8 − 696u9 − 1812u10 + · · · . (32)

These can be compared with low-temperature series derived directly (Domb 1973). To this
order the agreement is perfect.

It is straightforward, in principle, to repeat this analysis for the case of two coupling
constants K1, K2.

We thank Professors R J Baxter and F Y Wu for useful comments and advice. Valuable
assistance with some of the algebraic calculations was given by Dr Zheng Weihong and Mr Dane
Lance.
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